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ABSTRACT The past decade has seen tremendous efforts in
the research and development of new chemotherapeutic drugs
using target-based approaches. These efforts have led to the
discovery of small molecule tyrosine kinase inhibitors (TKIs).
Following the initial approval of imatinib by the US FDA in
2001, more than 15 TKIs targeting different tyrosine kinases have
been approved, and numerous others are in various phases of
clinical evaluation. Unlike conventional chemotherapy that can
cause non-discriminating damage to both normal and cancerous
cells, TKIs attack cancer-specific targets and therefore have a more
favorable safety profile. However, although TKIs have had out-
standing success in cancer therapy, there has been increasing
evidence of resistance to TKIs. The enhanced efflux of TKIs by
ATP-binding cassette (ABC) transporters over-expressed in cancer
cells has been found to be one such important resistance mech-
anism. Another major drawback of TKI therapies that has been
increasingly recognized is the extensive inter-individual pharma-
cokinetic variability, in which ABC transporters seem to play a
major role as well. This review covers recent findings on the
interactions of small molecule TKIs with ABC transporters. The
effects of ABC transporters on anticancer efficacy and the absorp-
tion, distribution, metabolism, excretion, and toxicity (ADME-Tox)
of the small molecule TKIs are summarized in detail. Since TKIs
have been found to not only serve as substrates of ABC trans-
porters, but also as modulators of these proteins via inhibition or
induction, their influence upon ABC transporters and potential
role on TKI-drug interactions are discussed as well.
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ABBREVIATIONS
ABC ATP-binding cassette
ADME-Tox Absorption, distribution, metabolism,

excretion, and toxicity
ALL Acute lymphoblastic leukemia
BCRP Breast cancer resistance protein
CML Chronic myelogeous leukemia
EGFR Epidermal growth factor receptor
MDR Multi-drug resistance
MRP1 Multi-drug resistance protein 1
PDGFR Platelet-derived growth factor receptor
P-gp P-glycoprotein
SAR Structure activity relationship
TKIs Tyrosine kinase inhibitors
VEGFR Vascular endothelial growth factor receptor

INTRODUCTION

For several decades, conventional cytotoxic agents have rep-
resented the cornerstone of anticancer chemotherapy.Most of
these cytotoxic agents exhibit their antitumor effect through
an interaction with DNA or its precursors, inhibiting the
synthesis of new genetic material, thereby killing the rapidly
dividing tumor cells. As these compounds cannot inherently
differentiate tumor cells from normal cells, they also harm
normal cells that divide rapidly, such as cells in bone marrow,
digestive tract, and hair follicles, resulting in themost common
side effects associated with chemotherapy: myelosuppression,
mucositis, and alopecia, respectively [1–4]. As a result,
although cytotoxic agents have a wide spectrum of antitu-
mor activities, their clinical use is often hampered by the
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occurrence of severe toxicities such as those mentioned
above. Therefore, there is a great unmet need in developing
anticancer drugs with increased selectivity and lower side
effect burden. In the last 15 years, tremendous progress has
been made in human genome mapping, structural biology,
and in molecular and cell biology technologies, which corre-
spondingly advances our understanding of the genetics, geno-
mics, biochemistry, and pharmacology of human cancers.
The rapidly expanding knowledge of cancer has driven the
current cancer chemotherapy development to target-based
approaches rather than conventional approaches. Among
the various targets identified in cancer, protein tyrosine
kinases have been exploited the most [5–7], and are found
to play a central role in regulating multiple cellular processes
that contribute to tumor development and progression, in-
cluding cell growth, differentiation, migration, angiogenesis,
and apoptosis [5, 8, 9]. An abnormality in tyrosine kinase
structure or function, such as overexpression of a tyrosine
kinase or mutations that stabilize the active kinase confor-
mation, could lead to cell-autonomous signaling, resulting in
malignant transformation and unregulated cell growth
[10–12]. It has been reported that more than 80% of the
oncogenes and proto-oncogenes involved in human cancer
are derived from protein tyrosine kinases [13]. To date, 90
unique tyrosine kinase genes have been identified in the
human genome [14]. Considering the critical role of tyrosine
kinases in the development and progression of many types of
cancer, the inhibition of the catalytic activity of tyrosine
kinases represents a very promising strategy to control the
deregulated activity of tyrosine kinases.

In the past decade, substantial efforts have been made in the
development of new chemotherapeutic drugs using target-
based approaches and has led to the discovery of small molecule
tyrosine kinase inhibitors (TKIs), an entirely new class of more
target-specific anticancer drugs [6, 15]. Imatinib was the first
molecularly-targeted TKI that received FDA approval in 2001.
It targets the BCR-ABL tyrosine kinase, a constitutively active
tyrosine kinase that drives hyperproliferation of stem and pro-
genitor cells and the consequent panmyelosis associated with
chronic myelogenous leukemia (CML) [16, 17]. Imatinib has
been demonstrated to be a highly effective treatment for the
chronic phase of CML, with high rates of complete remission
observed [18–20]. Indeed, the clinical success of imatinib rev-
olutionized CML therapy, and imatinib is currently viewed as
the first-line therapy for CML. Following imatinib, a variety of
TKIs targeting different tyrosine kinases, such as epidermal
growth factor receptor (EGFR), vascular endothelial growth
factor receptor (VEGFR), and platelet-derived growth factor
receptor (PDGFR) have been developed, and many studies are
now underway world-wide to investigate their clinical efficacy
[21–24]. Presently, more than 15 TKIs have received FDA
approval, with numerous more in various phases of clinical
evaluation. Unlike conventional chemotherapy that can cause

non-discriminating damage to both normal and cancer cells,
TKIs attack cancer-specific targets and therefore have a more
favorable safety profile. Because of their low toxicity profile,
TKIs can be taken orally on a daily basis. However, although
TKIs have had outstanding success in treating selected types of
cancer, unfortunately, there is accumulating and documented
evidence of acquired resistance to TKIs [25, 26]. Cellular
resistance to TKIs can arise by many mechanisms, including
unveiling point mutations within the kinase domain, modifica-
tions of signaling pathway, and target gene amplification or
overexpression [27]. In addition, enhanced efflux of TKIs by an
over-expression of ATP-binding cassette (ABC) transporters in
cancer cells has recently been found to be an important resis-
tance mechanism (Fig. 1) [28–30]. Besides incomplete response
due to acquired resistance, a further limitation of TKI therapies
has been the recognition that extensive inter-individual phar-
macokinetic variability exists [31–33], in which ABC trans-
porters appear to play prominent roles as well (Fig. 1) [29, 34].

In the present review we cover recent findings on the
interactions of small molecule TKIs with ABC transporters.
The influence of ABC transporters on anticancer efficacy and
the absorption, distribution, metabolism, excretion, and tox-
icity (ADME-Tox) of the small molecule TKIs are summa-
rized. As TKIs have been found not only to be transported by
ABC transporters but also to serve as modulators of these
proteins as inhibitors or inducers, their modulatory effect on
ABC transporters and subsequent TKI-drug interactions are
discussed as well. The information presented here may pro-
vide guidance in minimizing TKI resistance, optimizing TKI
dose regimen, as well as recognizing and avoiding unwanted
TKI-drug interactions.

TKIS AND CANCER CHEMOTHERAPY

Tysosine Kinases and Their Role in Cancer

Tyrosine kinases are classified as receptor tyrosine kinases and
non-receptor tyrosine kinases, with the former translating
extracellular signals into active intracellular cues and the latter
transducing signals within the cells. Of the 90 tyrosine kinase
genes identified in the human genome to date, 58 encode
receptor tyrosine kinase proteins [35]. Receptor tyrosine ki-
nases have 20 subfamilies, including the well-known EGFR,
VEGFR, PDGFR, insulin-like growth factor receptor (IGFR),
nerve growth factor receptor (NGFR), fibroblast growth factor
receptor (FGFR), and others [36]. All receptor tyrosine ki-
nases have a similar molecular structure, which includes an
extracellular ligand-binding domain, a single transmembrane-
spanning region, and an intracellular tyrosine kinase domain
[37]. Upon ligand binding, receptor tyrosine kinases undergo
a dimerization process or a conformational change, resulting
in auto-phosphorylation of the tyrosine kinase domains and
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increased kinase activity. The activated receptor tyrosine ki-
nases will further initiate a cascade of intracellular signaling
pathways. Ultimately, the complex signaling network trig-
gered by receptor tyrosine kinases leads to altered DNA
synthesis and cell division as well as a variety of biological
processes, including cell growth, migration, differentiation
and death [38]. Constitutive activation of receptor tyrosine
kinases can lead to malignant transformations via a variety of
mechanisms including the overexpression of wild-type recep-
tors, mutations in the kinase gene that cause ligand-independent
constitutive receptor activation, and trans-activation through
receptor dimerization [39–42].

Unlike receptor tyrosine kinases, non-receptor tyrosine
kinases lack transmembrane domains and are found in the
cytoplasm, nucleus, and the inner surface of the plasma mem-
brane. At present, 32 non-receptor tyrosine kinases are recog-
nized, which fall into ten subfamilies based on kinase domain
sequences [38]. Examples of non-receptor tyrosine kinases
include Src, Abl, and Janus kinases. The non-receptor tyrosine
kinases are integral components of the signaling cascades
triggered by receptor tyrosine kinases and by other cell surface
receptors. Dysregulation of non-receptor tyrosine kinase ac-
tivity has been revealed in the pathogenesis of many human

cancers [13]. Similar to receptor tyrosine kinases, the involve-
ment of non-receptor tyrosine kinases in cancer can also occur
through various mechanisms such as mutation, overexpres-
sion, and translocation.

Molecular Targeted Small Molecule TKIs

Increased knowledge and recognition of the critical role of
tyrosine kinases in cancer development, its activation mecha-
nisms, and the signaling pathways controlled by tyrosine ki-
nases provided the impetus for the development of novel and
target-specific classes of anticancer drugs, among which small
molecule TKIs represents an extremely promising and rapidly
expanding group. Small molecule TKIs in most cases com-
pete with ATP binding to the intracellular catalytic domain of
tyrosine kinases. This subsequently inhibit protein auto-
phosphorylation that involves in the post-receptor signal cas-
cade, resulting in antiproliferative and antiangiogenic effect
[42]. In addition to small molecule TKIs, there are a few other
promising approaches to inhibit the activation of tyrosine
kinases, such as targeted monoclonal antibodies (mAbs) which
are directed against the extracellular domain of receptor

Fig. 1 Schematic representation of potential interactions between TKIs and ABC transporters. The efflux transporters, including P-gp, BCRP and MRPs, are
localized in the apical side of the polarized cells, such as the luminal side of the intestinal epithelial cells, bile canalicular membrane of hepatocytes, the proximal renal
tubules and the luminal side of the brain endothelial cells. The efflux transporters pump TKI molecules back to the luminal side of the polarized cells mentioned
above, leading to decreased intestinal absorption, increased biliary excretion, increased urinary excretion, and deceased brain penetration of TKIs. In addition to
normal tissues, these efflux transporters are also expressed in tumor cells and can pump the TKI molecules out of the tumor, resulting in decreased intracellular TKI
concentrations, which subsequently leads to TKI resistance. TKI, tyrosine kinase inhibitor; P-gp, P-glycoprotein; BCRP, Breast Cancer Resistance Protein; MRP,
Multi-drug Resistance Protein.
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tyrosine kinases [43], and antisence oligonucleotides that
block receptor translation [44].

TKIs Targeting Epidermal Growth Factor Receptor Family

EGFR belongs to the ErbB family of receptor tyrosine kinases.
EGFR, also known as ErbB1 or HER1, has been reported to
be essential for the growth and differentiation of epithelial cells
[45]. Among the various receptor tyrosine kinases implicated
in human cancers, the deregulation of EGFR system seems to
be the most prevalent. EGFR has been found to be commonly
overexpressed in a variety of solid tumors, including non-small
cell lung cancer (NSCLC), colorectal adenocarcinoma, glio-
blastoma, squamous cell carcinoma of the head and neck,
ovarian, breast and prostate cancer [46–49]. In addition to
EGFR, HER2, also known as ErbB2, is an important onco-
genic kinase in the ErbB family. HER2 is a possible
heterodimerization partner of EGFR and it has been found
to be up-regulated in many types of human cancer, especially
in human breast cancer where HER2 gene amplification (2 to
20-fold) has been identified with a frequency of 30% [40, 50].
The formation of EGFR/HER2 heterodimer is the most
active form of EGFR. Considering the wide-spread contribu-
tion of the EGFR family in tumorgenesis, these receptors
represent one of the most promising targets for anticancer
therapy. A large number of small molecule TKIs targeting
EGFR have been developed and several of them have already
received FDA approval.

Gefitinib. A prominent representative of anti-EGFR TKIs is
gefitinib, which received an accelerated FDA approval in
2003 for the treatment of patients with NSCLC [51].
Gefitinib is a selective EGFR (ErbB1) tyrosine kinase inhibitor
and it has 200-fold greater affinity for ErbB1 (IC50 of 20–
80 nM) compared to ErbB2 [52]. Early results with gefitinib in
lung cancer are promising, but further trials that recruited
primarily non-Asian NSCLC patients could not demonstrate
a survival advantage [24]. Retrospective analysis of multiple
studies revealed that patients who were Asian, nonsmokers, or
women had significantly higher response rates [53, 54].
Tumors from these patients frequently have characteristic
activating mutations in EGFR. The standard dose of gefitinib
is 250mg daily. Gefitinib has a favorable safety profile and the
most frequent adverse effects were mild acneiform skin rash
and diarrhea.

Erlotinib. Erlotinib is also a selective and potent inhibitor of
the EGFR tyrosine kinase. Erlotinib competitively inhibits
ATP binding at the active site of the EGFR kinase domain,
with an IC50 of 2 nM. Erlotinib was approved by the FDA in
2004 for the second-line treatment of patients with locally
advanced or metastatic NSCLC. FDA approval was based
on the improvement demonstrated in overall survival in a

large placebo-controlled trial conducted in advanced stage
III or IV NSCLC patients [55]. Results from two phase III
studies showed no clinical benefit from the combination of
erlotinib with conventional chemotherapy over chemotherapy
alone [56]. In addition to NSCLC, it was subsequently ap-
proved for use in combination with gemcitabine as a first-line
treatment for patients with locally advanced, unresectable, or
metastatic pancreatic cancer [23]. Similar to gefitinib, the
most frequent adverse effects of erlotinib were also acneiform
skin rash and diarrhea [57].

Lapatinib. Lapatinib is a reversible and specific EGFR tyro-
sine kinase inhibitor which has been shown to have activity
against both EGFR (ErbB1) and HER2 (ErbB2), with IC50

values of approximately 10 nM [58, 59]. Due to its nonselec-
tive inhibition of EGFR, lapatinib has a broader spectrum of
antitumor activity and improved efficacy. Evidence of clinical
efficacy, including notable tumor responses and improved
survival, has been reported in several clinical trials in HER2
positive breast cancers for lapatinib used either alone or in
combination with other anticancer drugs [22]. Lapatinib was
approved by the FDA in 2007 for the treatment of HER2
positive breast cancer in combination with capecitabine. The
most frequent adverse effects of lapatinib were diarrhea, rash,
nausea and fatigue.

Afatinib. Afatinib is an irreversible inhibitor against ErbB
receptor family members, EGFR/ErbB1 (IC50=0.5 nM),
HER2/ErbB2 (14 nM), HER4/ErbB4 (1 nM), and the onco-
genic mutants EGFRL858R (0.4 nM) [60]. Afatinib received
FDA approval in 2013 as a first-line treatment for metastatic
NSCLC in patients whose tumors have EGFR exon 19 dele-
tions or exon 21 (L8558R) substitution mutations. The ap-
proval of afatinib was based on a head-to-head phase III trial
of afatinib or cisplatin plus pemetrexed in which patients with
metastatic NSCLC were stratified according to EGFR muta-
tion status. A significant prolongation of median progression-
free survival was found among patients with EGFRmutations
in the afatinib treatment arm as compared to the chemotherapy
arm [61]. Common side effects of afatinib include diarrhea,
rash, blisters or other skin lesions.

Canertinib (CI-1033). Canertinib is a novel, nonselective, irre-
versible EGFR inhibitor. As it is active against all four ErbB
members, canertinib is expected to have a greater efficacy and
broader spectrum of antitumor activity than the other pres-
ently available anti-EGFR TKIs. It may also have the advan-
tage of prolonged clinical effects with less frequent dosing
requirement. Canertinib has demonstrated activity against a
variety of human breast tumors in both in vitro and in vivo in
xenograft tumor models [62]. Clinical trials of canertinib
conducted in patients with breast cancers and NSCLC are
currently ongoing [35].

2240 Deng, Shao, Markowitz and An



TKIs Targeting Receptor Tyrosine Kinase Families Involved
in Angiogenesis

Angiogenesis, a process through which new blood vessels form
from pre-existing vessels, is an essential property of cancers. It
has been well documented that cancer cells secrete angiogenic
factors which can induce the formation of new blood vessels
which assure the flow of nutrients to the tumor cells. These
angiogenic factors include VEGF, PDGF, fibroblast growth
factor (FGF), and transforming growth factor (TGF) which are
found to be overexpressed in many tumor types [35]. The
most studied angiogenic factor is VEGF, which is secreted by
almost all solid tumors. VEGF initiates endothelial cell prolif-
eration when binding to members of the VEGF receptor
family. This receptor family includes a group with intracellu-
lar tyrosine kinase domains containing VEGFR1 (FLT1),
VEGFR 2 (KDR), and VEGFR3 (FLT4) [63]. Elevated ac-
tivities of the VEGF-VEGFR ligand-receptor system correlate
with increased tumor vascularization and metastasis, as well as
decreased survival [63]. In addition to VEGFR, PDGFR also
plays an important role in promoting angiogenesis. Two dis-
tinct PDGFR, PDGFRa and PDGFRb, have been identified.
Both receptor types have been found to be overexpressed in
many solid tumors, including dermatofibrosarcoma, glioblas-
toma, NSCLC, and others [64]. The establishment of the role
of receptor tyrosine kinases in promoting angiogenesis has
provided a new avenue of development for cancer therapeu-
tics. Many small molecule TKIs targeting VEGFR, PDGFR,
and other tyrosine kinases with similar functions have been
developed in the past 10 years.

Sorafenib. Sorafenib is a novel tyrosine kinase inhibitor that
inhibits both tumor cell proliferation and angiogenesis. It
targets multiple tyrosine kinases, including VEGFR1,
VEGFR2, VEGFR3, PDGFR-b, c-KIT, FLT-3 and b-RAF.
Sorafenib was the first multikinase inhibitor receiving FDA
approval (2005) for the treatment of patients with advanced
renal cell carcinoma and was later granted an additional
indication for the treatment of patients with unresectable
hepatocellular carcinoma [21, 65, 66]. Overall sorafenib has
a favorable safety profile. Sorafenib administration has been
associated with some adverse cardiovascular effects including
hypertension and arterial thromboembolic events which have
also been documented other anti-angiogenic medications.

Sunitinib. Similar to the aforementioned sorafenib, sunitinib is
also a multikinase inhibitor and inhibits the cellular signaling
of multiple targets including VEGFR1, VEGFR2, PDGFRa,
PDGFRb, FLT3, c-KIT, and RET. Sunitinib was approved
by the FDA in 2006 as a first-line treatment of advanced renal
cell carcinoma and in imatinib-resistant gastrointestinal stro-
mal tumor [67]. Sunitinib displays an intrinsically high degree
of brain penetration among TKIs, and its effect in recurrent

glioblastoma multiforme is currently under investigation. The
common side effects of sunitinib include fatigue, hypothyroid-
ism, bone marrow suppression and diarrhea.

Axitinib. Axitinib is a newly developed and potent tyrosine
kinase inhibitor which inhibits VEGFR-1, −2, and −3 at
picomolar levels and PDGFRb at nanomolar levels [68].
Axitinib showed efficacy against many solid tumors in Phase
II clinical trials and produced a significant increase in
progression-free survival compared with sorafenib in a Phase
III study conducted in patients with advanced renal cell car-
cinoma [69–71]. Axitinib received FDA approval in early
2012 for treatment of advanced renal cell carcinoma in
patients who had failed one prior systemic therapy.
Axitinib appears to be generally well tolerated. The
dose-limiting toxicities of axitinib were elevated blood
pressure, hemoptysis, and stomatitis.

Pazopanib, Vandertanib and Cediranib. Pazopanib is a second
generation tyrosine kinase inhibitor targeting VEGFR-1, −2,
and −3, PDGFRa, PDGFRb, and c-Kit. It was recently
approved by the FDA for the treatment of metastatic renal
cell carcinoma [72, 73]. Vandertanib is also a newly devel-
oped tyrosine kinase inhibitor which targets VEGFR and
EGFR [74]. It recently received the FDA approval for the
treatment of metastatic medullary thyroid carcinoma [75].
Finally, cediranib is a potent inhibitor of VEGFR-2 with
IC50 less than 1 nM. It also has activity against VEGFR-1,
VEGFR-3, PDGFR and c-Kit. Cediranib has been evaluated
in several clinical trials for the treatment of various tumors,
including recurrent GBM, NSCLC, and colorectal cancer
[76–78].

TKIs Targeting Non-receptor Tyrosine Kinases

Non-receptor tyrosine kinases are confined to the cellular
cytoplasm or nuclear compartment, and the dysregulation of
their activity has been implicated in the pathogenesis of many
human cancers. The most clinically relevant non-receptor
tyrosine kinase is BCR-ABL, a protein derived from a trans-
location event of chromosomes 9 and 22, resulting in a fusion
of the c-ABL and the breakpoint cluster region gene (BCR)
[35]. This new fusion gene, BCR-ABL, encodes an unregu-
lated, cytoplasm-targeted tyrosine kinase which allows the
cells to proliferate without being regulated by cytokines and
this permits the cells to become malignant. BCR-ABL on-
cogene is seen in 95% of patients with CML and 15 to 30%
of adult patients with acute lymphoblastic leukemia (ALL)
[79, 80]. The increased understanding of this pathogenetic
defect at the molecular level led to the development of a
number of small molecule TKIs targeting BCR-ABL tyro-
sine kinases.
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Imatinib. Imatinib is a potent inhibitor of the BCR-ABL ty-
rosine kinase and specifically kills proliferating myeloid cell
lines containing BCR-ABL withminimal harm to normal cells
[81]. In addition to BCR-ABL, imatinib also inhibits c-Kit
and PDGFR tyrosine kinases. In clinical trials, imatinib has
been shown to be highly effective in CML. Imatinib induced
major cytogenetic response in 80 to 90% of patients with
previously untreated CML [82]. Imatinib is also effective in
the treatment of BCR-ABL positive refractory adult ALL
[19]. Imatinib was the first molecularly targeted TKI to
receive FDA approval. It is approved for the treatment in
BCR-ABL positive CML, and in the treatment of gastrointes-
tinal stromal tumors that harbor c-Kit mutations, both of
which were difficult to treat before the clinical introduction
of imatinib [18, 83]. Imatinib is generally well tolerated, with
neutropenia, thrombocytopenia, and anemia representing the
most common adverse effects.

Dasatinib and Nilotinib. Although imatinib initially improved
the outcome of CML dramatically, its beneficial effects were
unfortunately limited by intrinsic or acquired drug resistance.
The recognition of imatinib resistance led to the development
of a second generation of BCR-ABL TKIs, such as dasatinib
and nilotinib [84]. Dasatinib is a second generation tyrosine
kinase inhibitor targeting BCR-ABL and was approved by the
FDA in 2006 for the treatment of imatinib-resistant CML
patients. In terms of BCR-ABL inhibition, dasatinib has an
IC50 of less than 1 nM, which is significantly more potent than
imatinib (IC50=100 nM). Similar to dasatinib, nilotinib is
another second generation BCR-ABL inhibitor that was like-
wise approved by the FDA in 2007 for the treatment of
imatinib-resistant or imatinib-intolerant disease. The IC50 of
nilotinib on BCR-ABL inhibition is less than 20 nM. Nilotinib
is also more potent than imatinib, and can overcome imatinib
resistance in some instances [85].

Bosutinib, Ponatinib, and Danusertib. Bosutinib is a potent TKI
against c-Src (IC50=1–2.4 nM) and Abl kinases (3.5 nM) [86].
Bosutinib was approved by the FDA in 2012 for treatment of
patients with chronic, accelerated, or blast phase Philadelphia
chromosome positive (Ph+) CML that have resistance to
prior medications, such as imatinib, dasatinib, or nilotinib.
Ponatinib is an effective oral TKI against ABL (0.37 nM),
c-Src (5.4 nM), c-Kit (12.5 nM), VEGFR2 (1.5 nM),
FGFR1 (2.2 nM), PDGFRα (1.1 nM), as well as several
ABL kinase variants [87]. As a multi-targeted TKI effec-
tive against many BCR-ABL variants, ponatinib received
FDA approval in 2012 for treatment of CML or Ph+ALL
patients that have been resistant to prior TKI therapy.
However, presently, ponatinib is temporarily suspended by
the FDA due to findings that a high percentage of patients
enrolled in ponatinib phase I and II trials experienced serious
adverse vascular effects.

THE ABC TRANSPORTERS IN CANCER DRUG
RESISTANCE AND DRUG DISPOSITION

The ABC transporter superfamily is one of the largest protein
superfamilies known. The vast majority of its members are
responsible for the transport of a diverse array of substrates,
including lipids, amino acids, sugars, bile salts, peptides, ste-
roids, endogenous metabolites, ions, drugs and other xenobi-
otics [86–92]. To date, at least 49 ABC transporters have been
identified in humans. Based on phylogenetic analysis, they have
been classified into seven subfamilies labeled A-G [93]. ABC
transporters represent active transporters and they efflux their
substrates against a concentration gradient using the energy of
ATP hydrolysis. The functional unit of an ABC transporter
contains two membrane spanning domains (MSDs) and two
nucleotide binding domains (NBDs). The conformation changes
within the MSDs to form a permeation pathway which are be-
lieved to be responsible for the transport of substrates.NBDs,where
the energy of ATP is harvested, act as the energy supplier [94].

Multi-drug resistance (MDR), a phenomenon in which can-
cer cells become resistant to various structurally and function-
ally unrelated chemotherapeutic agents, is a major obstacle in
the effective chemotherapy of human cancer patients. MDR
can be intrinsic or acquired. In intrinsic resistance, tumors fail
to respond to chemotherapy from the outset; whereas acquired
resistance is the situation that tumors initially respond to che-
motherapy but eventually become insensitive to treatment
upon relapse [95]. Several molecular mechanisms have been
reported to be associated with the development of MDR.
These mechanisms include alterations in drug targets such as
DNA topoisomerase II [96], increased repair of DNA damage
[97], reduced apoptosis [98], increased drug metabolism, e.g.
by glutathione (GSH) conjugation [99], down-regulation of the
uptake system (especially for those water soluble anticancer
drugs) [100], and enhanced efflux of drugs by ABC transporters
[101]. Although various cellular mechanisms have been shown
to underlie the development of MDR, enhanced anticancer
drug efflux via over-expression of ABC transporters in cancer
cells is the most commonly observed and best characterized
mechanism impairing the effectiveness of chemotherapy..
Among the 49 ABC transporters identified, P-glycoprotein (P-
gp, ABCB1), Multi-drug Resistance Protein 1 (MRP1,
ABCC1) and Breast Cancer Resistance Protein (BCRP,
ABCG2) account for the majority of the observed efflux
transporter-mediated MDR in humans and rodents [102].

ABC Transporters and MDR of Conventional Cytotoxic
Agents

P-gp and MRP1

The role of P-gp and MRP1 in MDR has been extensively
studied since their initial discovery by Ling and co-workers
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in 1976 and Cole and associates in 1992, respectively
[103, 104]. Both transporters are known to transport numerous
conventional anticancer drugs that are utilized in first
line chemotherapy against different cancers, such as
anthracyclines (doxorubin and daunorubicin), vinca alkaloids
(vinblastine and vincristine), camptothecins (topotecan) and
epipodophyllotoxinx (etoposide and teniposide) [90, 91,
105]. The expression of P-gp and MRP1 has been evaluated
in a number of investigations and have been detected in
almost every tumor type examined, including both solid
tumors and hematological malignancies [106]. P-gp expres-
sion in clinical tumor samples has been characterized and
was found both during diagnosis as well as relapse, indi-
cating its important role in both intrinsic and acquired
MDR [107, 108]. A number of clinical investigations have
suggested that P-gp over-expression correlates well with
poor response to chemotherapy [109, 110].

BCRP

Relative to P-gp and MRP1 which were discovered several
decades ago, BCRP is represents a relatively new identified
ABC transporter. BCRP has generated significant interest
since it was first cloned from a doxorubicin selected human
breast cancer cell line (MCF-7/AdrVP) in 1998 [111].
Although BCRP was initially termed Breast Cancer
Resistance Protein, the expression of this protein is not limited
to breast cancer cells. In a study conducted by Diestra et al.
[112], among 150 human solid tumors comprising 21 differ-
ent tumor types, the expression of BCRP was detected in all
tumor types examined, with a high frequency in colorectal
carcinoma, gastric carcinoma, hepatocellular carcinoma,
bladder carcinoma, ovarian carcinoma, small cell lung cancer,
and melanoma. Many structurally distinct conventional anti-
cancer drugs, including mitoxantrone, topotecan, irinotecan,
etoposide, and flavopiridol, are substrates of BCRP [91, 113,
114]. A few other anti-cancer agents, such as bisantrene and
anthracyclines (doxorubicin and daunorubicin), although not
transported by wild-type BCRP, are substrates of the BCRP
mutant R482T [92]. The correlation of BCRP with MDR is
supported by several clinical studies. For example, Candeil
et al. [115] examined the expression of BCRP in tumor sam-
ples from 42 patients with colon cancer and observed higher
BCRPmRNA levels in tumors in the irinotecan-treated group
compared to the untreated group.

ABC Transporters and Drug Disposition

The efflux transporters that are present in cancer cells are also
present in normal tissues. Due to their wide distribution in
normal tissues and their broad substrate spectra, ABC trans-
porters have been found to play an important role in the
ADME-Tox of their substrates [89].

P-gp

In 1987, Thiebaut et al. investigated the expression and cellu-
lar localization of P-gp in normal human tissues using the
monoclonal antibody MRK16 [116]. They found that P-gp
was expressed exclusively in the apical membrane of
enterocytes of the gastrointestinal tract, hepatocytes renal
proximal tubules and capillary endothelial cells of the brain
and testis. The apical orientation of P-gp in normal tissues
indicated that physiologically, P-gp may serve as a defense
mechanism: it pumps xenotoxins back into the gastrointestinal
tract to decrease absorption and expels xenotoxins into bile
and urine to increase their elimination. P-gp appears to also a
similar function in the capillary endothelial cells comprising
the blood–brain and blood-testis barrier where it is also highly
expressed. P-gp.has a very broad substrate spectrum and a
structurally diverse group of clinically important therapeutic
agents are known to serve as substrates including anticancer
drugs, HIV-protease inhibitors, H2-receptor antagonists, im-
munosuppressive agents, calcium-channel blockers, antibi-
otics and an array of neuropsychiatric medications (Doran
et al. 2005 [119]) [90, 91, 117]. Although the substrates of P-
gp are structurally dissimilar, most of them are amphipathic
and lipid soluble compounds, with aromatic rings and a
positive charge at physiological pH. The important role of
P-gp in the disposition of its substrates has been verified by
numerous investigations. For example, after intravenous and
oral administration, the plasma AUC of paclitaxel was 2-fold
and 6-fold, higher, respectively, in mdr1a (−/−) mice than
mdr1a (+/+) mice [118].

Because of the importance of P-gp in drug disposition,
the screening for P-gp transport has become routine in the
pharmaceutical industry. Indeed, promising lead com-
pounds can be found to be severely hampered in their
ability to produce their intended pharmacological effects
in vivo if they are good substrates for P-glycoprotein, parti-
cularly if the route of administration is intended to be oral
or the ultimate target tissues is one highly expressing P-gp.
Additionally, the potential for drug-drug interactions arises
under the circumstances of a P-gp substrate being
coadministered with another agent that can significantly
inhibit P-gp activity [119].

MRP1

MRP1 is expressed in most tissues in the human body,
with relative high levels detected in the lung, testis, pe-
ripheral blood mononuclear cells, choroid plexus and
kidney [120]. Unlike P-gp, which is expressed in apical
membranes, MRP1 expression in polarized cells is re-
stricted to the basolateral side, and correspondingly its
substrates are transported towards the basolateral side of
epithelia [121]. Therefore, in contrast to P-gp,
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physiologically, MRP1 may serve as a cellular defense
mechanism rather than organismal defense. Although MRP1
also has the capacity to mediate the transport of a wide array of
compounds and P-gp and MRP1 share some common sub-
strates, generally MRP1 can transport anionic compounds
while P-gp substrates tend to be neutral or positively charged
drugs at physiologic pH. The compounds which have been
identified to be MRP1 substrates include anticancer drugs,
various glutathione conjugates, glucuronide or sulfate conju-
gates, HIV protease inhibitors, fluorescent compounds such as
calcein, and antibiotics [91, 122].

BCRP

Similar to P-gp and MRP1, BCRP is also expressed in a
number of normal tissues and not limited to cancer cells.
The highest expression of BCRP has been observed in human
placental tissue followed by prostate, small intestine, brain,
colon, liver and ovary [111]. In contrast to P-gp, there is little
expression of BCRP mRNA in the human kidney. On the
other hand, murine Bcrp1 is abundantly expressed in both
mouse and rat kidney [123]. In terms of cellular localization,
similar to P-gp, BCRP is expressed in the apical side of
epithelial and endothelial membranes which are important
for drug absorption, distribution and elimination, suggesting
that BCRP also functions as a protective efflux pump and has
the potential to limit bioavailability and increase the biliary
and urinary excretion of xenobiotics that are BCRP sub-
strates. BCRP has a very broad substrate spectrum which
encompasses both positively and negatively charged com-
pounds, including anticancer agents, antibiotics, HMG-CoA
reductase inhibitors, antiviral drugs, porphyrins, chemical
toxins, carcinogens, fluorescent dyes, endogenous com-
pounds, and several glucuronide and sulfate conjugates,
have been found to be transported by BCRP [92, 124–126].
BCRP is also found to play an important role in drug dispo-
sition. For example, with the co-administration of 5,7-
dimethoxyflavone, a potent BCRP inhibitor, the concentra-
tion of mitoxantrone in mouse liver and kidney increased
more than 90% and 60%, respectively, compared with the
mitoxantrone alone group [127].

INTERACTION OF ABC TRANSPORTERS
WITH SMALL MOLECULE TKIS

Role of ABC Transporters in TKI Resistance in Cancer

In the past decade, a significant number of small molecule
TKIs have been approved for cancer treatment and these
targeted agents have produced impressive clinical benefits
in many type of tumors. However, although TKIs have

increased selectivity and fewer side effects relative to con-
ventional cytotoxic agents, much like these conventional
anticancer drugs, the development of acquired TKI resis-
tance TKIs after an initially favorable response has been
frequently observed. This acquired resistance represents a
major obstacle for future development of successful tyro-
sine kinase targeted anticancer therapy. Among several
reported cellular mechanisms, enhanced cellular efflux
TKIs of TKI due to overexpression of ABC transporters in
cancer cells represents an important mechanism associated
with observed TKI resistance (Fig. 1).

Bcr-Abl TKIs

The first report of efflux transporter-mediated TKI resistance
was described in 2000 by Mahon and coworkers [128]. They
determined that BCR-ABL positive cells with MDR1 overex-
pression were resistant to imatinib. Similar phenomenon of P-
gp-mediated resistance to imatinib was also reported by dif-
ferent research groups using several other cell lines [129–131].
Illmer and colleagues showed that the intracellular levels of
imatinib were decreased in P-gp-positive leukemic cells and
CysA, a well-known P-gp inhibitor, could restore imatinib
cytotoxicity in these cells [130]. Research conducted by
Widmer and associates showed that imatinib intracellular
concentration increased by 4- to 9-fold in P-gp positive
K562 cells when the expression of ABCB1 was down
regulated by RNAi [132]. In addition to P-gp, imatinib
was also found to be transported by BCRP. It has been
reported by several research groups that BCRP protected
CML-derived Bcr-Abl K562 leukemia cells from the cyto-
toxic effect of imatinib by decreasing its intracellular con-
centration [29]. Further investigations on the interaction of
ABC transporters with imatinib indicated that imatinib
interacts with P-gp and BCRP only at low micromolar
concentrations within a narrow concentration range and
exhibits inhibitory effect at high concentrations [133–135].
In addition to P-gp and BCRP, the interaction between
MRP1 and imatinib has also been evaluated and imatinib
was found to be a poor substrate of MRP1 [136].

Similar to imatinib, the second generation BCR-ABL
TKIs nilotinib and dasatinib have also been found to be
substrates of both P-gp and BCRP [137, 138]. It has been
reported that P-gp and BCRP-overexpressing K562 cells are
resistant to nilotinib and dasatinib, indicating that these two
drugs are transported by Pgp and BCRP, and that these two
transporters could convey inherent resistance to nilotinib and
dasatinib [137]. For nilotinib, it seems BCRP plays a larger
role than P-gp in nilotinib resistance. For example, Hegedus
et al. reported that compared to parental K562 cells, BCRP
expressing K562 cells were 8.8-fold more resistant to
nilotinib, whereas Pgp-expressing K562 cells only produced
a small (albeit significant) resistance to nilotinib [137]. In
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contrast to imatinib, nilotinib and dasatinib, bosutinib, a
newly developed BCR-ABL inhibitor, was not a substrate
of either Pgp or BCRP, indicating that the presence of
these transporters will not confer resistance to bosutinib
[137]. In vitro investigations into the mechanism of resis-
tance of danusertib, another novel and potent BCR-ABL
inhibitor, revealed that danusertib is a BCRP substrate,
and BCRP overexpression was identified and validated as
the predominant mechanism of acquired danusertib resis-
tance in BCR-ABL positive cells [139].

EGFR Family TKIs

Compared with BCR-ABL TKIs, the information related to
the role of ABC transporters in the cancer resistance of EGFR
TKIs is less abundant, and the evaluations were mainly fo-
cused on BCRP. It has been reported that the resistance to
gefitinib was consistently observed when BCRP was trans-
duced to several different cancer cell lines, including human
epidermal carcinoma A431 cells, human NCSLC PC-9 cells,
human colon cancer Caco-2 cells, and adenocarcinomaWiDr
cells [135, 140, 141]. Usuda et al. reported that BCRP
expression can be detected in the wtEGFR-expressing
patient with acquired gefitinib resistance [30]. These stud-
ies suggested that BCRP-mediated gefitinib efflux may
account for the poorer clinical outcomes of gefitinib,
and BCRP may be used as at least one predictor of
clinical response to gefitinib. In addition to gefitinib, the
role of the ABC transporter in the resistance of several
other EGFR TKIs has also been reported. Canertinib, a
nonselective and irreversible EGFR tyrosine kinase inhib-
itor, was found to be transported by BCRP [142]. In
addition, the role of the ABC transporter in the resistance
to erlotinib was also investigated and the result revealed
that BCRP does not seem to be the major determinant of
erlotinib resistance.

VEGFR TKIs and Other Emerging New TKIs

The information of ABC transporter-mediated resistance of
TKIs targeting VEGFR, PDGFR, and other receptors are not
available at this point. However, since most of these TKIs
have been found to be substrates of ABC transporters, efflux
transporter-mediated acquired resistance may be anticipated
to occur after chronic administration of these TKIs as well.

Role of ABC Transporters in ADME-Tox of TKIs

Beyond resistance in cancer, another significant factor that
may compromise the therapeutic efficacy of TKIs is the ex-
tensive inter-individual variability in pharmacokinetics. Large
inter-individual variability in systemic exposure has been con-
sistently observed in numerous TKIs, including imatinib,

gefitinib, erlotinib, sorafenib, dasatinib, nilotinib, lapatinib,
and sunitinib [33]. It has been reported that the steady-state
trough concentrations of gefitinib varied 20-fold following the
administration of a single 250 mg daily oral dose to 14 adult
cancer patients [143]. The clearance of imatinib was found to
vary 60-fold in patients with gastrointestinal stromal tumors
[144]. As noted earlier, ABC transporters are expressed not
only in cancer cells but also in a variety of normal tissues that
are known to play critical roles in ADME-Tox of numerous
xenobiotics, and are frequently found to be a major source of
the inter-individual variability observed in the disposition of
their substrates [89]. The role of ABC transporters in ADME-
Tox of TKIs, especially with regard to their brain penetration,
has been extensively investigated in the recent years, with
detailed information summarized below.

Bcr-Abl TKIs

In vitro data have indicated that imatinib is a good substrate of
both Pgp and BCRP [145]. Oostendorp et al. performed an
animal study of imatinib and comprehensively evaluated the
impact of P-gp and Bcrp1 on imatinib ADME in Pgp-
knockout, Bcrp1-knockout, Pgp/Bcrp1-knockout, and wild-
type mice [34]. Their results indicated that the bioavailability
of imatinib was significantly increased when it was
coadministered with elacridar (a dual Pgp and BCRP inhib-
itor), indicating that these two transporters play an important
role in imatinib absorption. In the presence of elacridar, the
plasma concentrations of imatinib were also greatly increased.
Compared to wild-type mice, fecal excretion of imatinib was
significantly diminished by 3.4-fold in P-gp knockoutmice and
5.2-fold in P-gp/Bcrp1 knockout mice, but was not signifi-
cantly different in BCRP knockout mice, suggesting that P-gp
may play a larger role in the elimination of imatinib [34]. The
role of P-gp and Bcrp1 in imatinib tissue distribution was
evaluated in mice liver, kidneys and brain following an ad-
ministration of 50 mg/kg dosage. The results showed that
these two transporters have minimal role in imatinib liver
and kidney distribution, but have a significant impact on
imatinib brain penetration [34]. Interestingly, P-gp and
BCRP seem to work synergistically in limiting imatinib brain
penetration - imatinib brain levels increased only 2.3-fold in
P-gp knockout mice and 1-fold in Bcrp1 knockout mice at 1 h,
whereas in Pgp/Bcrp1 knockout mice imatinib brain level
increased 12.6-fold compared to that of wild-type mice [34].
The observation that Pgp and BCRP appear to work in
concert in limiting imatinib brain penetration has also been
confirmed by several other research groups [145–147]. In
addition to imatinib, the apparent synergistic roles of Pgp
and BCRP in limiting drug delivery across the BBB was also
observed for dasatinib [148–150]. For example, dasatinib
brain concentrations did not change significantly in Bcrp1
knockout mice, increased 3.6-fold in Pgp knockout mice,
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and increased 13.2-fold in Pgp/Bcrp1 knockout mice [150].
Although in vitro data showed that both Pgp and Bcrp1 effi-
ciently transport imatinib and dasatinib, based on the in vivo
results it appears that P-gp plays a more prominent role than
BCRP in the brain penetration of imatinib and dasatinib. As it
has been reported that the expression of Pgp on BBB is
significantly higher than that of Bcrp1 [151], the difference
in their expression may be the reason behind the subdued
effect of Bcrp1-mediated efflux at BBB. Apart from imatinib
and dasatinib, investigations into the role of ABC transporters
in the transport of nilotinib and other newly developed BCR-
ABL TKIs are mainly limited to in vitro studies. In vitro data
indicated that nilotinib is a poor P-gp substrate and a good
BCRP substrate.. Ponatinib is transported by both P-gp and
BCRP, whereas bosutinib is not a substrate of either trans-
porter [137, 152].

EGFR Family TKIs

Similar to BCR-ABL TKIs, most of the EGFR TKIs are also
substrates of both P-gp and BCRP, and these two transporters
have recently also been found to play an important role in the
pharmacokinetics and tissue distribution of these TKIs, espe-
cially with regard to their brain penetration. Agarwal et al.
reported that the transport of gefitinib across the BBB was
significantly limited by P-gp and BCRP [153]. Interestingly,
consistent with that observed for imatinib and dasatinib, the
brain level of gefitinib was substantially increased (70-fold
higher) in P-gp/Bcrp1 knockout mice compared to wild-type
mice, whereas the increase in gefitinib brain concentration
was only modest in P-gp knockout and Bcrp1 knockout mice,
again suggesting a synergistic role of P-gp and Bcrp1 in
gefitinib brain penetration [153]. This phenomenon was also
observed in several other EGFRTKIs, including erlotinib and
lapatinib, from several independent laboratories [154–157].
These findings are of clinical significance for therapy in brain
cancers, where co-administration of a dual P-gp and BCRP
inhibitor can increase brain delivery of TKIs and correspond-
ingly enhance drug efficacy.

In addition, ABC transporters have also been found to be
associated with the toxicity of TKIs. For example, Cusatis et al.
reported that cancer patients with reduced BCRP activity
resulting from a common genetic variant were at increased
risk of gefitinib-induced diarrhea [158].

VEGFR TKIs and Other Emerging New TKIs

TKIs targeting VEGFR, PDGFR, and other receptors in-
volved in angiogenesis represent a rapidly emerging class of
TKIs. The role of P-gp and BCRP in the disposition of this
novel class of TKIs, particularly regarding their brain pene-
tration, has been investigated extensively. Consistent with the
results obtained in BCR-ABL and EGFR TKIs, Pgp and

BCRP work synergistically and play a crucial role in
restricting the brain penetration of many TKIs targeting
angiogenesis, including sorafenib [159, 160], sunitinib [160],
axitinib [161], pazopanib [142], and vandetanib [162]. For
example, relative to wild-type mice, the brain accumulation
was increased 9.3- to 36-fold for sorafenib, 24-fold for suniti-
nib, 21-fold for axitinib in Pgp/Bcrp1 knockout mice [160,
161]. In addition, Elarida, a dual Pgp/Bcrp1 inhibitor, signif-
icantly enhanced the brain levels of pazopanib and
vandertanib by 5-fold [162]. For the TKIs mentioned above,
although Pgp and BCRP work in concert in restricting their
brain access, for the majority of these agents, P-gp has a
greater impact than Bcrp1 on brain penetration. Sorafenib
is a notable exception however, in that the role of BCRP in
active efflux at the BBB is greater than that of P-gp [163].
Unlike other VEGFRTKIs, for the agent cediranib, P-gp and
Bcrp1 do not appear to exert a synergistic effect on it brain
penetration, with only P-gp playing a role in the transport of
cediranib across BBB [164].

Inhibitory Effect of TKIs on ABC Transporters –
Potential Chemosensitizers?

While numerous TKIs have been reported to be substrates of
ABC transporters, many of them have also been found to be
inhibitors of these transporters at the same time [137, 138,
152, 165–169]. For example, imatinib, a substrate of P-gp and
BCRP at low concentration, can efficiently inhibit the func-
tion of these transporters at high concentration and has been
shown to sensitize resistant cells against co-administered con-
ventional cytotoxic agents that are substrates of these trans-
porters, including mitoxantrone, vincristine, topotecan and
SN-38 [134, 170]. Similar to imatinib, both nilotinib and
dasatinib have been shown to interact with P-gp and BCRP
as substrates within narrow concentration ranges and as
inhibitors at higher concentrations [137, 138]. For these
BCR-ABL TKIs, their effect on ABC transporters are
concentration-dependent, whether they behave as substrate
or inhibitor will predominate in the in vivo system could
depend on location: in the gastrointestinal tract where the
concentrations are usually high, it is very likely that the
role of inhibitor predominates; while in the tumor cells or in
brain where the concentrations may be low, the substrate
phenotype could prevail. Among these three BCR-ABL
TKIs, Dohse et al. reported that nilotinib is a more potent P-
gp and BCRP inhibitor in ex vivo and in vitro models than
imatinib and dasatinib [138]. Unlike imatinib, nilotinib and
dasatinib, which all have biphasic effects on ABC transporters,
bosutinib, a newly developed BCR-ABL tyrosine kinase in-
hibitor currently in clinical trials, was recently found to be an
inhibitor, but not a substrate of Pgp or BCRP [137].

Similar to BCR-ABL TKIs, many EGFR TKIs, including
gefitinib, erlotinib, and lapatinib, which are all dual substrates
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Table 1 Interaction of P-gp and BCRP with TKIs
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of Pgp and BCRP, were also found to be inhibitors of these
ABC transporters [135]. For example, gefitinib reversed
SN-38 resistance in BCRP-transduced leukemia cells, but
not in those parental cells [165]. Yanase et al. reported that
gefitinib increased intracellular accumulation of topotecan in
K562/BCRP cells, and P388/BCRP transplanted mice treat-
ed with the combination of irinotecan and gefitinib survived
significantly longer than those treated with irinotecan alone or
gefitinib alone [165]. In addition, gefitinib was also reported
to significantly enhance the bioavailability of oral irinotecan
by 4-fold in pediatric patients with refractory solid tumors
[171]. As with gefitinib, erlotinib reversed resistance to
vincristine and paclitaxel in P-gp-overexpressing cancer cells
as well as resistance to mitoxantrone and SN-38 in BCRP-
overexpressing cancer cells [172]. Similarly, lapatinib en-
hanced the cytotoxic effect of conventional chemotherapeu-
tic drugs that are substrates of P-gp or BCRP in cancer cells
expressing these transporters [167, 173]. In addition, the

inhibitory effect of lapatinib was found to be more potent
against BCRP than P-gp (IC50 values of 0.025 and 3.9 μM,
respectively) [157].

Similar to the BCR-ABL and EGFR TKIs, the VEGFR
tyrosine kinase inhibitor sunitinib has also been reported to be
an inhibitor of both P-gp and BCRP, and at low micromolar
concentrations it was able to reverse cancer drug resistance
mediated by these transporters in vitro [168, 174]. The IC50 of
sunitinib for inhibition of IAAP binding was 14.2 and
1.33 μM for P-gp and BCRP, respectively [168]. Similarly,
axitinib produced inhibition of P-gp-mediated transport of
digoxin and BCRP-mediated transport of topotecan with
IC50 values of 3 μM and 4.4 μM, respectively [169].

In addition to the TKIs mentioned above, many other
newly developed TKIs, including vemurafenib [175], crizo-
tinib [176], vandetanib [177], canertinib [178], cediranib
[179], and ponatinib [152], have also been reported to be
not only substrates but also inhibitors of P-gp and/or BCRP

Table 1 (continued)

Regarding the inhibitor characterizations of TKIs, the evaluation is mainly based upon literature reported IC50 values.With regard to the substrate characterization,
evaluations were based upon documented efflux ratios (i.e. B-to-A/A-to-B ratio obtained from bi-directional transport studies). For several TKIs, their IC50 values
and/or efflux ratios have not been reported yet. In those cases the evaluation was made based upon the concentrations assessed in the available studies and the
evaluation and conclusion(s) of the authors of these reports

*Abbreviations; RCC (Renal cell carcinoma), CML (Chronic myelogenous leukemia), ALL (Acute lymphoblastic leukemia), HCC (Hepatocellular carcinoma),
PC (Pancreatic carcinoma), GIST (Gastrointestinal stromal tumor), NSCLC (Non-small-cell lung carcinoma), BC (Breast carcinoma), ThyC (Thyroid carcinoma)

**Symbol; +++ (Good substrate or inhibitor), ++ (Moderate substrate or inhibitor), + (Weak substrate or inhibitor), × (Not substrate or inhibitor)
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and can reverse transporter mediated drug resistance in
various cancer cells in vitro.

The combination of small molecule TKIs with conventional
chemotherapeutic drugs has been commonly employed in the
clinic based on the rationale that they have different anticancer
mechanisms of action. The findings that most TKIs have
inhibitory effects on ABC transporters add more validity to
the use of combination therapy since most conventional che-
motherapeutic drugs are known to be ABC transporter sub-
strates. When used in combination, TKIs not only exert anti-
cancer effects but also act as chemosensitizers to reverse ABC
transporter-mediated resistance against co-administered con-
ventional anticancer drugs, thus improving overall treatment
outcomes synergistically. The synergistic interaction between
TKIs and conventional chemotherapeutic agents has been
observed in numerous studies conducted either in vitro uti-
lizing ABC transporter expressing cancer cell lines or in vivo
in murine xenograft tumor models [29, 135, 173, 180, 181].
In addition to combination therapy of a TKI with a con-
ventional cytotoxic drug, combined use of different TKIs
has also been investigated by several research groups and
may be regarded as an additional strategy to enhance
anticancer effects [182–184]. For example, Hiwase et al.
reported that nilotinib increased the intracellular concentra-
tion of dasatinib in CML cells through P-gp inhibition and
the authors proposed that a combination of low dose
dasatinib and nilotinib may provide an additive/synergistic
anti-leukemic effect in P-gp-expressing leukemia cells that
are refractory to tyrosine kinase therapy. Results from an
investigation by Weisberg et al. demonstrated that imatinib
increased the intracellular concentration of nilotinib through
inhibition of ABC transporters, which may explain the
observed synergy between these two TKIs. It should be
noted that while combination therapy with TKIs and con-
ventional agents (or among TKIs themselves) seems to
synergize anticancer effects, improve tumor response and
overall survival, these combinations may also hold the po-
tential to increase the toxicity of administered conventional
anticancer drugs due to their elevated systemic and tissue
concentrations, particularly in those normal tissues express-
ing high levels of these ABC transporters.

Structure Activity Relationship of the Interaction
Between TKIs and ABC Transporters

To our knowledge, there are no comprehensive research
reports describing Structure Activity Relationships (SAR)
between TKIs and ABC transporters. As most TKIs are
found to be inhibitors and/or substrates of ABC transporters, it
is difficult to establish the structure activity relationship. Based
on our preliminary and somewhat cursory analysis, we identi-
fied some structural similarities of those TKIs that are not
transported by P-gp (indicated by red arrows in Table 1). The

backbone structures of these non-P-gp substrate TKIs are noted
to be flanked by secondary amines with halogen substitutions on
phenyl groups on one end of the molecule, and by nitrogen-
containing heterocycles with N-methylation on the other.
Therefore, TKIs with these common structural features may
be less likely to be transported by P-gp and correspondingly, will
have less MDR efflux potential. No structure similarity was
observed for those TKIs that are inhibitors of ABC transporters.
In order to produce a more robust prediction of the interaction
between TKI and ABC transporters, further quantitative struc-
ture activity relationship (QSAR) analysis would be required.
For TKIs that are efflux transporter inhibitors, their IC50 values
can be used to quantitatively evaluate their inhibitory potency.
For TKIs that are substrates of efflux transporters, their efflux
ratio (i.e. B-to-A/A-to-B ratio obtained from those bi-directional
transport studies) can be used to quantitatively evaluate their
transport activity. It should be noted that for those TKIs that are
inhibitors of ABC transporters, IC50 values have not been
examined for many of them. Similarly, efflux ratio values are
unavailable for many TKIs. Thus, to have a robust QSAR
analysis, further experiments are needed to obtain IC50 and
efflux ratio values that haven’t been reported.

CONCLUSIONS

Small molecule TKIs represent a novel class of anticancer
drugs that attack cancer-specific targets and have a generally
more favorable safety and tolerability profiles relative to
conventional cytotoxic agents. However, although TKIs
have better selectivity and fewer side effects, they share
several limitations with conventional chemotherapeutic
drugs, including drug resistance and high inter-individual
pharmacokinetic variability. ABC transporters, particularly
P-gp and BCRP, have been found to play important roles
in treatment resistance and inter-individual variability. For
small molecule TKIs that are actively transported by ABC
transporters, recent investigations suggest that the co-
administration of non-toxic ABC transporter inhibitors
may overcome TKI resistance and improve TKI bioavail-
ability. In addition, ABC transporters appear to play a
crucial role in the brain penetration of TKIs, and numer-
ous studies have confirmed that P-gp and BCRP work in
a synergistic fashion to restrict the brain penetration of
TKIs. Additionally, the co-administration of a dual inhibitor
(i.e. P-gp and BCRP) with a TKI may represent a promising
new strategy in increasing brain delivery of TKIs and enhanc-
ing their efficacy in the treatment of brain tumors. As many
TKIs interact with ABC transporters as both substrates and
inhibitors, combination therapies of TKIs with conventional
cytotoxic agents or other TKI’s that are ABC transporter
substrates may enhance their anticancer effect through ABC
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transporter-mediated pharmacodynamic interactions in the
cancer cells. A broadening in the understanding of the role(s)
of ABC transporters in MDR and ADME-Tox of small
molecule TKIs will ultimately prove helpful to the clinician
tasked with TKI dose optimization balanced with patient
safety. Finally, it is important to delineate interactions of
ABC transporters with currently approved TKIs with re-
gard to MDR efflux and ADME-Tox so as to provide
guidance in the future design of TKI molecules which
can overcome or circumvent these impediments to more
successful chemotherapy.
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